Math2050A Term1 2016

Tutorial 1, Sept 15

Exercises

1. Let $S=[a, b)$, where $a<b$. Find $\inf (S)$ and $\sup (S)$.
2. Let $S=\left\{\frac{n}{2^{n}}: n \in \mathbb{N}\right\}(0 \notin \mathbb{N}$ in our definition). Find $\inf (S)$ and $\sup (S)$.
3. (p. 45 Q 4 in our textbook)

Let $A \subset \mathbb{R}$ such that $A \neq \emptyset$ and bounded above. Let $b>0$. Define $b A=\{b a: a \in A\}$. Show that $\sup (b A)=b \sup (A)$. What is $\sup (b A)$ if $b<0$ and A is bounded below?
4. (p. 45 Q7 in our textbook) let $A \subset \mathbb{R}, B \subset \mathbb{R}$, be nonempty sets. Show that $\sup (A+B)=$ $\sup (A)+\sup (B)$ whenever A, B are bounded above and $\inf (A+B)=$ $\inf (A)+\inf (B)$ whenever A, B are bounded below.
5. (p. 45 Q11 in our textbook)

Let X, Y be nonempty sets and let $h: X \times Y \rightarrow \mathbb{R}$ have a bounded range. Define

$$
f(x)=\sup \{h(x, y): y \in Y\}, g(y)=\inf \{h(x, y): x \in X\}
$$

Show that $\sup \{g(y): y \in Y\} \leq \inf \{f(x): x \in X\}$

Solution (Outline)

1. I only find $\sup (S)$ here. We claim that $\sup (S)=b$

Proof:
For $s \in S, s<b$. Therefore, b is an upper bound.
We want to show that if u is an upper bound of S, then $u \geq b$:
Since u is an upper bound of $S, u \geq s \forall s \in S=[a, b)$.
This implies also $u \geq s$ whenever $b>s$. This says that $u \geq b$. Let's see:
Suppose $u<b$, take $\alpha=\frac{u+b}{2}$, then $b>\alpha$ but $u<\alpha$. Contradicts to $" u \geq s$ whenever $b>s$ ". Therefore, $u \geq b$.
By definition of supremum, $\sup (S)=b$
You can also argue that "if $v<b$, then v cannot be an upper bound of $S "$ to conclude that b is the least, as what we do in Q2.
2. Since $\frac{n+1}{2^{n+1}}=\frac{1}{2}\left(\frac{n}{2^{n}}\right)+\frac{1}{2}\left(\frac{1}{2^{n}}\right)$ is taking mean value of $\frac{n}{2^{n}}$ and $\frac{1}{2^{n}}$, we have $\frac{n+1}{2^{n+1}} \leq \frac{n}{2^{n}}$.
Therefore, $\frac{1}{2}$ is the maximum of S. We have $\sup (S)=\frac{1}{2}$
For the infimum, we claim that $\inf (S)=0$:
0 is obviously a lower bound of S.
We claim that any postive number cannot be a lower bound of S :
Let $\epsilon>0$ be any postive number.
Since $2^{n}=(1+1)^{n}=1+n+\frac{n(n-1)}{2}+\ldots \geq \frac{n(n-1)}{2} \forall n \geq 2$, then $\frac{n}{2^{n}} \leq \frac{2}{n-1}$. By Archimedean property, there is $N \in \mathbb{N}$ such that $1 / N<\epsilon / 2$. Take $n=N+1$, we have $\frac{n}{2^{n}} \leq \frac{2}{n-1}=\frac{2}{N}<\epsilon$. Hence ϵ is not a lower bound of S .
3. $b A$ is a nonempty subset of \mathbb{R} bounded above. Hence, $\sup (b A)$ exists. $\sup (b A) \geq b a \forall a \in A$. Then, $\frac{1}{b} \sup (b A) \geq a \forall a \in A$. Since LHS is a constant and upper bound of A , we have $\frac{1}{b} \sup (b A) \geq \sup (A)$, hence $\sup (b A) \geq b s u p(A)$.
One can conclude that for any nonempty subset of \mathbb{R} bounded above, say B, and any postive number, say c, we have $\sup (c B) \geq \operatorname{csup}(B)$. Put $c=\frac{1}{b}$ and $B=b A$, one can obtain the other inequality sign. (Check $\frac{1}{b} b A=A$)
4. I only do the following: Assume $\sup (A+B)=\sup (A)+\sup (B)$ whenever A, B is bounded above, we show that $\inf (A+B)=\inf (A)+$ $\inf (B)$ whenever A, B are bounded below. Define $-A=\{-a: a \in A\}$, then by assumption, $\sup ((-A)+(-B))=\sup (-A)+\sup (-B)$ and hence $-\inf (A+B)=-\inf (A)-\inf (B)$. You need to check that $-A$ is bounded above, $\sup (-A)=-\inf (A)$ and $-(A+B)=(-A)+(-B)$
5. Since $\{h(x, y): y \in Y\}$ and $\{h(x, y): x \in X\}$ are nonempty bounded subset of \mathbb{R}, respectively for each $x \in X$ and $y \in Y$, then both $f(x)$ and $g(y)$ are well-defined.
For each $y \in Y, g(y) \leq h(x, y) \forall x \in X$. For each $x \in X, h(x, y) \leq$ $f(x) \forall y \in Y$. Now, let $x_{0} \in X$ being fixed, then for each $y \in Y$, $g(y) \leq h\left(x_{0}, y\right) \leq f\left(x_{0}\right)$. Since $f\left(x_{0}\right)$ is a constant and an upper bound of $\{g(y): y \in Y\}$, we have $\sup \{g(y): y \in Y\} \leq f\left(x_{0}\right)$. This holds for all x_{0} in X and LHS is a constant as well as a lower bound of $\{f(x): x \in X\}$, so $\sup \{g(y): y \in Y\} \leq \inf \{f(x): x \in X\}$.

