Math2050A Term1 2016 Tutorial 1, Sept 15

Exercises

- 1. Let S = [a, b), where a < b. Find inf(S) and sup(S).
- 2. Let $S = \{\frac{n}{2^n} : n \in \mathbb{N}\}$ $(0 \notin \mathbb{N} \text{ in our definition})$. Find inf(S) and sup(S).
- 3. (p.45 Q4 in our textbook) Let $A \subset \mathbb{R}$ such that $A \neq \emptyset$ and bounded above. Let b > 0. Define $bA = \{ba : a \in A\}$. Show that sup(bA) = bsup(A). What is sup(bA) if b < 0 and A is bounded below?
- 4. (p.45 Q7 in our textbook) let $A \subset \mathbb{R}$, $B \subset \mathbb{R}$, be nonempty sets. Show that sup(A + B) = sup(A) + sup(B) whenever A, B are bounded above and inf(A + B) = inf(A) + inf(B) whenever A, B are bounded below.
- 5. (p.45 Q11 in our textbook) Let X, Y be nonempty sets and let $h: X \times Y \to \mathbb{R}$ have a bounded range. Define

$$f(x) = \sup\{h(x, y) : y \in Y\}, g(y) = \inf\{h(x, y) : x \in X\}$$

Show that $\sup\{g(y) : y \in Y\} \le \inf\{f(x) : x \in X\}$

Solution (Outline)

- I only find sup(S) here. We claim that sup(S) = b Proof: For s ∈ S, s < b. Therefore, b is an upper bound. We want to show that if u is an upper bound of S, then u ≥ b: Since u is an upper bound of S, u ≥ s ∀s ∈ S = [a, b). This implies also u ≥ s whenever b > s. This says that u ≥ b. Let's see: Suppose u < b, take α = u+b/2, then b > α but u < α. Contradicts to "u ≥ s whenever b > s". Therefore, u ≥ b. By definition of supremum, sup(S) = b You can also argue that "if v < b, then v cannot be an upper bound of S" to conclude that b is the least, as what we do in Q2.
 Since n+1 = 1(n) + 1(1) is taking means where of n and 1
- 2. Since $\frac{n+1}{2^{n+1}} = \frac{1}{2}(\frac{n}{2^n}) + \frac{1}{2}(\frac{1}{2^n})$ is taking mean value of $\frac{n}{2^n}$ and $\frac{1}{2^n}$, we have $\frac{n+1}{2^{n+1}} \leq \frac{n}{2^n}$. Therefore, $\frac{1}{2}$ is the maximum of S. We have $sup(S) = \frac{1}{2}$ For the infimum, we claim that inf(S) = 0: 0 is obviously a lower bound of S. We claim that any postive number cannot be a lower bound of S: Let $\epsilon > 0$ be any postive number. Since $2^n = (1+1)^n = 1 + n + \frac{n(n-1)}{2} + ... \geq \frac{n(n-1)}{2} \forall n \geq 2$, then $\frac{n}{2^n} \leq \frac{2}{n-1}$. By Archimedean property, there is $N \in \mathbb{N}$ such that $1/N < \epsilon/2$. Take n = N + 1, we have $\frac{n}{2^n} \leq \frac{2}{n-1} = \frac{2}{N} < \epsilon$. Hence ϵ is not a lower bound of S.
- 3. bA is a nonempty subset of \mathbb{R} bounded above. Hence, sup(bA) exists. $sup(bA) \geq ba \ \forall a \in A$. Then, $\frac{1}{b}sup(bA) \geq a \ \forall a \in A$. Since LHS is a constant and upper bound of A, we have $\frac{1}{b}sup(bA) \geq sup(A)$, hence $sup(bA) \geq bsup(A)$. One can conclude that for any nonempty subset of \mathbb{R} bounded above,

say *B*, and any postive number, say *c*, we have $sup(cB) \ge csup(B)$. Put $c = \frac{1}{b}$ and B = bA, one can obtain the other inequality sign. (Check $\frac{1}{b}bA = A$)

4. I only do the following: Assume sup(A + B) = sup(A) + sup(B) whenever A, B is bounded above, we show that inf(A + B) = inf(A) + inf(B) whenever A, B are bounded below. Define $-A = \{-a : a \in A\}$, then by assumption, sup((-A) + (-B)) = sup(-A) + sup(-B) and hence -inf(A + B) = -inf(A) - inf(B). You need to check that -Ais bounded above, sup(-A) = -inf(A) and -(A + B) = (-A) + (-B) 5. Since $\{h(x, y) : y \in Y\}$ and $\{h(x, y) : x \in X\}$ are nonempty bounded subset of \mathbb{R} , respectively for each $x \in X$ and $y \in Y$, then both f(x)and g(y) are well-defined. For each $y \in Y$, $g(y) \leq h(x, y) \ \forall x \in X$. For each $x \in X$, $h(x, y) \leq Y$

 $f(x) \ \forall y \in Y$. Now, let $x_0 \in X$ being fixed, then for each $y \in Y$, $g(y) \leq h(x_0, y) \leq f(x_0)$. Since $f(x_0)$ is a constant and an upper bound of $\{g(y) : y \in Y\}$, we have $\sup\{g(y) : y \in Y\} \leq f(x_0)$. This holds for all x_0 in X and LHS is a constant as well as a lower bound of $\{f(x) : x \in X\}$, so $\sup\{g(y) : y \in Y\} \leq \inf\{f(x) : x \in X\}$.